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PETER HARRIOTT

SCHOOL OF CHEMICAL ENGINEERING
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Abstract

For molecules only slightly smaller than the pores of a membrane, the fraction
rejected depends on product flow rate, molecular shape and diffusivity, and
membrane structure. A significant factor for dilute solutions is the reduced
flow of solution in pores containing a solute molecule compared to the flow
of solvent in adjacent empty pores.

INTRODUCTION

Ultrafiltration and reverse osmosis are separation processes that rely
on a pressure difference across a membrane for transport of water or
other solvent. Typical ultrafiltration membranes have a connected net-
work of pores with a mean diameter between 20 and 100 A, which is
large enough for laminar flow of water but small enough to exclude large
solute molecules or colloidal particles. Reverse osmosis membranes are
dazsigned to reject ionized salts and small molecules, and if they can be
considered to have pores, the pores must be less than 20 A in diameter.
For such tight membranes it is difficult to distinguish between transport
through definite pores and a solution-diffusion mechanism of transport.
This paper primarily discusses ultrafiltration membranes, but the theory
may be applicable to the coarser types of reverse osmosis membranes.

The name ultrafiltration comes from the concept that the membrane
acts as a sieve, screening out molecules larger than the pore size. Small
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solute molecules and solvent pass through the pores, while large molecules
are rejected at the membrane surface and form a more concentrated
solution on the upstream side. A sharp molecular weight cutoff is not
expected because most membranes have a distribution of pore sizes.
Intermediate size molecules will pass through some of the pores but will
not be able to enter the finest pores, and this leads to partial rejection
or a lower concentration in the permeate solution than in the feed. How-
ever, for commercial membranes, there is a wide range of molecular
weights (50-100-fold) between solutes having almost zero rejection and
those with almost complete rejection (/), suggesting either a very wide
range of pore sizes or an alternate mechanism of partial rejection for
intermediate size molecules.

PARTITION THEORY

A proposed modification of the sieving theory was based on a sieving
factor, defined as the ratio of product concentration to concentration at
the wall (2). While this partly accounts for the effect of polarization on
rejection, it does not allow for the concentration gradients within the
membrane. An equilibrium distribution should be assumed at both
surfaces of the membrane, as in Merten’s treatment (3). In the following
equations, the internal concentration C,,. is based on the volume of
pore fluid, whereas Merten’s C,, is based on the total membrane volume:

Coore=KC,, D)

The partition factor K is less than 1.0 because some of the pore volume
is accessible to solvent but not to the larger solute molecules, Theories
and some data for K are discussed later. If K is the same at both surfaces
of a uniform membrane, the gradients during steady-state ultrafiltration
would be as shown in Fig. la. For an asymmetric membrane with a
sharply-defined skin and a large pore substructure, the gradients of
Fig. 1a would apply to the skin layer, and there would be no gradient in
the substructure. If the transition from the fine pores in the skin to the
large pores in the supporting layer is not abrupt, there would be a gradual
increase in pore concentration in this region, as shown in Fig. 1b. To
avoid the complications of dealing with a gradual change in membrane
characteristics, the gradients are assumed to be as shown in Fig. la.

The flux of solute within the membrane depends on the flow of solution
and the diffusion of solute relative to the center of mass. Merten (3)
showed that for dilute solutions and moderately permeable membranes
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Fi1G. 1. Concentration gradients in ultrafiltration membranes. (a) Idealized
asymmetric membrane. (b) Membrane with gradual transition to large pores.

the following simplified equation could be used:

F2 = ucpore - De<%§jrc) (2)

Integration of Eq. (2) and assumption of the same partition factor at
both boundaries leads to
C Kexp (ulL/D,)

—_P —

C, K-—1+exp@l/D,) 3

where L = membrane (or skin) thickness and, D, = D,.g/t.

To determine the solute rejection based on the feed side concentration,
mass transfer in the external boundary layer must be considered. For
steady-state diffusion of rejected solute back to the feed solution, the
equation of de Filippi and Goldsmith (4) would apply:

c,—-C
=kIn|X2 2P
u n<Cf—Cp> 4)

The rejection could then be predicted by solving Eq. (3) and (4) for a
given set of membrane parameters and external transfer coefficient k.
As indicated by Eq. (3), the rejection approaches zero at low product
flux because molecular diffusion in the pores tends to equalize the con-
centration on both sides of the membrane. If we consider only the mem-
brane selectivity and base the rejection on concentration at the wall, the
rejection would approach a limit of 1 - K at high product rates. How-
ever, because concentration polarization becomes more severe at high
rates, the actual rejection eventually decreases with increasing flow, giving
a maximum in the graph of rejection versus product rate. Most ultrafiltra-
tion data show a decrease in rejection with increasing flow because the
data are taken at high fluxes where the effect of concentration polarization
dominates.
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HINDERED FLOW THEORY

A weakness of the previous theory is that the solution in the pores is
treated as a continuum, with concentration depending only on distance
from the membrane surface. Since the pores are only slightly larger than
the molecules that are partially rejected, and since frequent pore inter-
sections make the length of a pore quite short, the concentration of solute
will vary from pore to pore at the same depth. If the average concentra-
tion is low, say 1.0%, most pores will have no solute molecules, some
will have one, and very few pores will have two. A cross section of a mem-
brane with random pores is shown in Fig. 2.

Some partition of solute between the external solution and the pore
fluid is assumed, as in the previous theory, and there is a diffusion flux
because of a gross concentration gradient. However, the first term in
Eq. (2) must be modified because more solvent will flow through an open
pore than through an adjacent pore which has a large molecule occupying
much of the volume. Flow through open pores does not contribute to
the convective flux of solute and the flux of solute is less than uCp,,
even if each solute molecule moves at the average velocity of the fluid
which surrounds it. To develop this concept further, the hindrance to
flow is considered for randomly oriented polymer molecules and for
spherical molecules such as globular proteins or viruses.

POLYMER MOLECULES

A polymer molecule in a pore creates a local region of high concentra-
tion and high viscosity. The flow of solution is assumed to vary inversely
with the effective average viscosity in the pore. Consider the dilute solution
case where there is only one polymer molecule per pore in o fraction of
the pores and none in the remaining fraction. The total solution flow is
expressed in terms of the flow of solvent with no solute present, u*, and
the ratio of solvent viscosity to viscosity in an occupied pore:

FiG. 2. Cross section of ultrafiltration membrane.
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u=u*l — o) + u*oc(%> (5)

The solute is carried only in occupied pores, which have local concentra-
tion Cpq/at:

solute carried = (u*a@> (%) 6)
u [+ 4
In terms of the measured product flow, the convective solute flux is:
solute carried = ————— (ﬂ) Coore @)
(1 — o + a@) #
2

For dilute solutions, « is nearly zero and the denominator term in Eq. (7)
can be dropped. The equation for total solute transport then becomes:

Ho d ore
F,=ul*\c _—_ D ACore 8
2 u(/.t) pore e( dy > ®)

This is the same as Eq. (2) except for the term (uq/n), and the product

concentration is:
K (@> exp ¢
&=—=t ©)
¥ K<@> — 14+ expo
u

where ¢ = ul /D (uy/u). The rejection based on the wall concentration is
plotted in Fig. 3.

A significant feature of this model is that the maximum rejection (based
on C,) is 1 — K(ue/u) rather than 1 — K. For example, a distribution
coefficient of 0.2 and a viscosity ratio of 0.25 means a potential rejection
of 959%. Even if the distribution coefficient is 1 or greater than 1, as has
been reported for a few systems (5, 6), high rejection is possible if solute
molecules appreciably hinder the flow of solution through occupied pores.

A sample calculation based on the hindered flow theory was made for
polyethylene oxide in water in membranes with uniform cylindrical pores.
The average pore length between intersections was assumed to be equal
to the pore diameter, so that each pore had a volume nd?/4. The weight
percent polymer in an occupied pore was calculated for one molecule per
pore, and the viscosity was assumed the same as for a bulk solution of
that concentration. The viscosity ratio and the maximum rejection are

0
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F1G. 3. Rejection of solutes by ultrafiltration membranes.

shown in Fig. 4 as a function of molecular weight for 25 A radius pores.
The radius of the polymer molecules was calculated from r? = Nb/6 (7),
where N is the number of segments and b the segment length. The partition
coefficient K was taken from Casassa’s plot (7) for polystyrene in porous
glass, which approximately fits the equation K = 1 — r/R. The maximum
rejection varies from 40 to 999 over a 6-fold range of molecular weights,
showing that a sharp cutoff cannot be expected even with a uniform pore
size.

To show the effects of molecular diffusion within the membrane and
concentration polarization, Eq. (9) was applied with the following para-
meters. The membrane was assumed to have a 1 or a 0.2-u skin with 409
voids, a tortuosity of 2, and a pore radius of 25 A. (The calculated water
flux at 10 psi is 23 gal/day, ft* for a 1-u skin.) The bulk diffusivity for
5000 molecular weight polyethylene oxide is 1.2 x 107 cm?/sec, and
this was reduced by the empirical factor (I — r/R)? to get a pore diffusivity.
Beck and Shultz (8) found a hindered diffusion factor of about (1 — r/R)*,
but this included a distribution coefficient which was assumed to be
(1 — r/R). The estimate of D, is very uncertain because there are no
data for (r/R > 0.5. The mass transfer coefficient was taken as 6 x 1074
cm/sec, based on Goldsmith’s data for stirred-cell ultrafiltration of polymer
solutions (2).

As shown in Fig. 5, the predicted rejection goes through a maximum at
a flux of 2-4 x 10™* cm/sec and then drops sharply because of polariza-
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Fic. 5. Predicted rejection of polyethylene oxide, M = 5000, for R = 25 A,
k = 6 x 10* cm/sec.
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tion. With a l-ux skin, the maximum rejection is 879, compared with
a possible value of 91%,. If the membrane skin is 0.2 yu, there is a greater
effect of molecular diffusion, particularly at low product rates,

SPHERICAL MOLECULES

The viscous flow of liquid through a cylindrical tube containing rigid
spheres was discussed by Wang and Skalak (9). They considered a chain
of spheres equally spaced along the axis of a long tube, and their cal-
culations for a center-to-center spacing equal to the tube diameter are
used here to estimate the effect of a single spherical molecule in a short
pore segment. The main effect of a molecule almost as large as the pore
is to lower the flow for a given pressure gradient and, if only a fraction
of the pores have any solute molecules, the velocity in the occupied pores
will be less than in the empty pores. The ratio of these velocities is shown
as a function of the radius ratio in Fig. 6. This ratio v/v* would replace
Ho/p in Eq. (5) to (9), and Fig. 3 would then apply to dilute solutions of
either rigid molecules or polymer chains. However, note that the hin-
drance to flow caused by a rigid molecule is expected to be less than that
caused by a high molecular weight polymer. For a sphere, v/v* is 0.45 at
r/R = 0.9, whereas the viscosity ratio might be 0.05 to 0.10 for a polymer
chain of the same radius.

A secondary effect of a rigid sphere in a pore is that the sphere tends
to be carried along at a velocity greater than the average fluid velocity.
Even though a molecule or particle takes random positions because of
Brownian motion, it is confined to a region between the center and a
distance r from the wall, where the average velocity exceeds that for the
entire pore. For Wang and Skalak’s case, where the sphere was on the
centerline, the ratio of sphere velocity to average fluid velocity approached
2.0 for small spheres and was 1.14 for r/R = 0.9. Since their ratios are

v
Kk

o5

1
o] 05 1.0
YR

Fic. 6. Hindrance to flow for a sphere in a circular pore.
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too high for molecules that have random radial positions, yet are not
far from 1.0 for the most interesting case of a molecule nearly filling
the pore, the effect is neglected in this analysis.

DISCUSSION

The main feature of the hindered flow theory is that the flow of solution
is assumed to be smaller in pores containing a single solute molecule than
in empty pores. This effect does not change the general shape of the rejec-
tion curve but does make the maximum possible rejection greater than
1 — K. Other models which give rejections greater than | — K have been
presented, but they are based on different premises. In Merten’s (3)
approach, which follows earlier work by Spiegler and Kedem and Katch-
alsky, the frictional interaction between solute and membrane is assumed
proportional to solute velocity, and the convective flux and the diffusion
flux in Eq. (2) are both reduced by a factor 1/b, where b = 1 + f23/f21,
However, it seems possible to have no frictional interaction between a
solute and the pore wall and yet have a diffusivity much less than the bulk
value because the wall restricts the Brownian motion of the solute. The
pore diffusivity is about 0.1 the bulk value for a molecule half the size of
the pore (8), which corresponds to » = 10. According to the frictional
interaction theory, such a molecule would be carried along at only 0.1
the average pore velocity, which seems unlikely. A randomly arranged
polymer chain would have portions of the molecule throughout the pore
cross-section, and drag on the chain segments would tend to move the
molecule with little or no slip. If the molecule were a rigid sphere, it
might even move slightly more rapidly than the average fluid.

The theory presented here does not exclude the possibility of an addi-
tional factor for solute retardation caused by adsorption on the wall or
entanglement of a polymer chain in two pores. These interaction effects
would decrease the average convective solute velocity, though adsorption
would also increase the total solute concentration. These effects would
also cause a further decrease in the effective diffusivity, but the overall
factor for decrease in diffusivity and the total reduction in convective
flux because of hindered solution flow and slip between solute and solvent
might be quite different and should be considered separately.

It is difficult to check the proposed theory using published results be-
cause there is very little data on partition factors or diffusion coefficients
for molecules in small liquid-filled pores. For the example presented here,
K was assumed to be (I — r/R) based on limited data for polystyrene in
porous glass. Casassa (7) presents a thermodynamic derivation for random
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polymer chains in different types of pores, and his predictions for a flat
plate model are in fair agreement with the data, though K’s predicted for
circular pores are much too low. The pores in a membrane are probably
more like void spaces in a packed bed than either circular pores or the
spaces between flat plates, and agreement with a theory based on any
simple shape might be a coincidence. The partition coefficient may be
influenced by polymer-membrane interactions. Jellinek and Bloom (6)
reported that K ranged from 1.7 to 4.3 for polyvinylpyrrolidone in cel-
lulose ester membranes, indicating adsorption of polymer. However, the
effective diffusivities were not very much below the bulk values, showing
that the polymer was free to migrate in the membrane.

For spherical molecules in small cylindrical pores, many workers have
used the Renkin equation, with K = (1 — r/R)*>. Giddings and co-
workers (/0) have extended the Renkin approach and presented theoretical
distribution coefficients for spheres and other rigid molecules in various
types of pores. However, the derivations assume no molecule-wall interac-
tion and may be greatly in error for /R close to 1.0. Imagine a pure
solvent with molecules 9 A in diameter entering a solid with 10 A pores.
Since the centers of the molecules are restricted to the central 1% of the
pore cross-section, the Renkin equation predicts that only 19 of the pore
volume is occupied, which seems much too low. Haller (5) found K =~ 1
for a spherical virus in porous glass with /R = 0.4. Perhaps K values of
less than 1 come primarily from a pore size distribution which makes some
portion of the pore volume truly inaccessible to the solute.

It would be helpful to have more data on the partition factor and diffu-
sion in small pores for both compact molecules and polymers, but it
would be very difficult to get such data using typical ultrafiltration mem-
branes because the skin layer is such a small fraction of the membrane
thickness. Tests on uniform membranes or porous particles will have to
be combined with pore size data to predict K for ultrafiltration membranes.

For a thorough treatment of ultrafiltration, the effects of a pore size
distribution and a molecular weight distribution for the solute would also
have to be considered. The hindered flow theory predicts that a solute
molecule will spend proportionately more time in small pores than in
large pores as it travels through the membrane, which tends to decrease
the effective average pore size. If there are several solutes, the rejection
for each based on C,, is calculated separately as long as the concentrations
in the membrane are low enough so that few pores have more than one
solute molecule. The complication arises from calculating the wall con-
centration for each solute, since all partially rejected solutes contribute
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to an increase in the osmotic pressure, which affects the product flow, and
to an increase in the viscosity of the solution near the wall, which affects
the diffusion flux in the boundary layer.

SYMBOLS

solute concentration on the feed side of the membrane
solute concentration, mass per unit volume of membrane
solute concentration, mass per unit volume of pore
solute concentration in the product

solute concentration at the wall or membrane-solution interface
pore diameter

effective diffusivity, D&/t

friction coefficient, solute-solvent

friction coefficient, solute-membrane

solute flux, mass/total area, time

mass transfer coefficient for external boundary layer, length/
time

partition factor, C,,,./C,,

membrane (or skin) thickness

radius of solute molecule

pore radius

product flux, volume/total area, time

flux with no solute in the feed

particle velocity in a pore

velocity of solvent in an empty pore

distance normal to the surface

fraction of pores containing a solute molecule

void fraction

tortuosity

viscosity of solution in a pore

viscosity of solvent

defined by Eq. (9)
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