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SEPARATION SCIENCE, 8(3), pp. 291-302, 1973 

The Mechanism of Partial Rejection 
by Ultrafiltration Membranes 

PETER HARRIOTT 
SCHOOL OF CHEMICAL ENGINEERING 
CORNELL UNIVERSITY 

ITIIACA, NEW YORK 14850 

Abstract 
For molecules only slightly smaller than the pores of a membrane, the fraction 
rejected depends on product flow rate, molecular shape and diffusivity, and 
membrane structure. A significant factor for dilute solutions is the reduced 
flow of solution in pores containing a solutc molecule compared to the flow 
of solvent in adjacent empty pores. 

INTRODUCTION 

Ultrafiltration and reverse osmosis are separation processes that rely 
013 a pressure difference across a membrane for transport of water or 
oi:her solvent. Typical ultrafiltration membranes have a connected net- 
work of pores with a mean diameter between 20 and 100 .&, which is 
large enough for laminar flow of water but small enough to exclude large 
solute molecules or colloidal particles. Reverse osmosis membranes are 
designed to reject ionized salts and small molecules, and if they can be 
considered to have pores, the pores must be less than 20 A in diameter. 
For such tight membranes it is difficult to distinguish between transport 
through definite pores and a solution-diffusion mechanism of transport. 
This paper primarily discusses ultrafiltration membranes, but the theory 
may be applicable to the coarser types of reverse osmosis membranes. 

The name ultrafiltration comes from the concept that the membrane 
acts as a sieve, screening out molecules larger than the pore size. Small 
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292 HARRIOTT 

solute molecules and solvent pass through the pores, while large molecules 
are rejected at the membrane surface and form a more concentrated 
solution on the upstream side. A sharp molecular weight cutoff is not 
expected because most membranes have a distribution of pore sizes. 
Intermediate size molecules will pass through some of the pores but will 
not be able to enter the finest pores, and this leads to partial rejection 
or a lower concentration in the permeate solution than in the feed. How- 
ever, for commercial membranes, there is a wide range of molecular 
weights (50-100-fold) between solutes having almost zero rejection and 
those with almost complete rejection ( I ) ,  suggesting either a very wide 
range of pore sizes or an alternate mechanism of partial rejection for 
intermediate size molecules. 

PARTITION THEORY 

A proposed modification of the sieving theory was based on a sieving 
factor, defined as the ratio of product concentration to concentration at 
the wall (2). While this partly accounts for the effect of polarization on 
rejection, it does not allow for the concentration gradients within the 
membrane. An equilibrium distribution should be assumed at both 
surfaces of the membrane, as in Merten’s treatment (3 ) .  In the following 
equations, the internal concentration C,,,, is based on the volume of 
pore fluid, whereas Merten’s C, is based on the total membrane volume: 

The partition factor K is less than 1.0 because some of the pore volume 
is accessible to solvent but not to the larger solute molecules. Theories 
and some data for K are discussed later. If K is the same at both surfaces 
of a uniform membrane, the gradients during steady-state ultrafiltration 
would be as shown in Fig. la. For an asymmetric membrane with a 
sharply-defined skin and a large pore substructure, the gradients of 
Fig. l a  would apply to the skin layer, and there would be no gradient in 
the substructure. If the transition from the fine pores in the skin to the 
large pores in the supporting layer is not abrupt, there would be a gradual 
increase in pore concentration in this region, as shown in Fig. Ib. To 
avoid the complications of dealing with a gradual change in membrane 
characteristics, the gradients are assumed to be as shown in Fig. la. 

The flux of solute within the membrane depends on the flow of solution 
and the diffusion of solute relative to the center of mass. Merten (3) 
showed that for dilute solutions and moderately permeable membranes 
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0 .  b. 

FIG. 1. Concentration gradients in ultrafiltration membranes. (a) Idealized 
asymmetric membrane. (b) Membrane with gradual transition to large pores. 

the following simplified equation could be used : 

Integration of Eq. (2) and assumption of the same partition factor at  
both boundaries leads to 

where L = membrane (or skin) thickness and, D, = Dpore&/T. 
'To determine the solute rejection based on the feed side concentration, 

mass transfer in the external boundary layer must be considered. For 
steady-state diffusion of rejected solute back to the feed solution, the 
equation of de Filippi and Goldsmith ( 4 )  would apply: 

u = k In (". - '") 
Cf - CP 

(4) 

The rejection could then be predicted by solving Eq. (3) and (4) for a 
given set of membrane parameters and external transfer coefficient k. 
As indicated by Eq. (3), the rejection approaches zero at low product 
flux because molecular diffusion in the pores tends to equalize the con- 
centration on both sides of the membrane. If we consider only the mem- 
brane selectivity and base the rejection on concentration at the wall, the 
rejection would approach a limit of 1 - K at high product rates. How- 
ever, because concentration polarization becomes more severe at high 
rates, the actual rejection eventually decreases with increasing flow, giving 
a maximum in the graph of rejection versus product rate. Most ultrafiltra- 
tion data show a decrease in rejection with increasing flow because the 
data are taken at high fluxes where the effect of concentration polarization 
dominates. 
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HINDERED F L O W  T H E O R Y  

A weakness of the previous theory is that the solution in the pores is 
treated as a continuum, with concentration depending only on distance 
from the membrane surface. Since the pores are only slightly larger than 
the molecules that are partially rejected, and since frequent pore inter- 
sections make the length of a pore quite short, the concentration of solute 
will vary from pore to pore at the same depth. If the average concentra- 
tion is low, say 1.00/0, most pores will have no solute molecules, some 
will have one, and very few pores will have two. A cross section of a mem- 
brane with random pores is shown in Fig. 2. 

Some partition of solute between the external solution and the pore 
fluid is assumed, as in the previous theory, and there is a diffusion flux 
because of a gross concentration gradient. However, the first term in 
Eq. ( 2 )  must be modified because more solvent will flow through an open 
pore than through an adjacent pore which has a large molecule occupying 
much of the volume. Flow through open pores does not contribute to 
the convective flux of solute and the flux of solute is less than uCpore, 
even if each solute molecule moves at the average velocity of the fluid 
which surrounds it. To develop this concept further, the hindrance to 
flow is considered for randomly oriented polymer molecules and for 
spherical molecules such as globular proteins or viruses. 

POLYMER MOLECULES 

A polymer molecule in a pore creates a local region of high concentra- 
tion and high viscosity. The flow of solution is assumed to vary inversely 
with the effective average viscosity in the pore. Consider the dilute solution 
case where there is only one polymer molecule per pore in a fraction of 
the pores and none in the remaining fraction. The total solution flow is 
expressed in terms of the flow of solvent with no solute present, u*, and 
the ratio of solvent viscosity to viscosity in an occupied pore: 

FIG. 2. Cross section of ultrafiltration membrane. 
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u = u*(l - CI) -I- u*a - ("a) 
The solute is carried only in occupied pores, which have local concentra- 
tion Cporela : 

solute carried = (.*a:) (%) 
In terms of the measured product flow, the convective solute flux is 

U 
(:)cwre (7) 

l - a + a -  
P 

solute carried = 

For dilute solutions, CI is nearly zero and the denominator term in Eq. (7) 
can be dropped. The equation for total solute transport then becomes: 

This is the same as Eq. (2) except for the term ( p o / p ) ,  and the product 
concentration is : 

where 4 = uL/D,(p,/p). The rejection based on the wall concentration is 
plotted in Fig. 3. 

A significant feature of this model is that the maximum rejection (based 
on C,) is 1 - K(po/p) rather than 1 - K. For example, a distribution 
coefficient of 0.2 and a viscosity ratio of 0.25 means a potential rejection 
of 95 %. Even if the distribution coefficient is 1 or greater than I ,  as has 
been reported for a few systems (5, 6), high rejection is possible if solute 
molecules appreciably hinder the flow of solution through occupied pores. 

A sample calculation based on the hindered flow theory was made for 
polyethylene oxide in water in membranes with uniform cylindrical pores. 
The average pore length between intersections was assumed to be equal 
to the pore diameter, so that each pore had a volume nd3/4.  The weight 
percent polymer in an occupied pore was calculated for one molecule per 
pore, and the viscosity was assumed the same as for a bulk solution of 
that concentration. The viscosity ratio and the maximum rejection are 
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FIG. 3. Rejection of solutes by ultrafiltration membranes. 

shown in Fig. 4 as a function of molecular weight for 25 8, radius pores. 
The radius of the polymer molecules was calculated from r z  = Nb/6 (7), 
where Nis  the number of segments and b the segment length. The partition 
coefficient K was taken from Casassa’s plot (7) for polystyrene in porous 
glass, which approximately fits the equation K = 1 - r /R .  The maximum 
rejection varies from 40 to  99 % over a 6-fold range of molecular weights, 
showing that a sharp cutoff cannot be expected even with a uniform pore 
size. 

To show the effects of molecular diffusion within the membrane and 
concentration polarization, Eq. (9) was applied with the following para- 
meters. The membrane was assumed to have a 1 or a 0.2-p skin with 40% 
voids, a tortuosity of 2, and a pore radius of 25 A. (The calculated water 
flux at 10 psi is 23 gal/day, ft2 for a 1-p skin.) The bulk diffusivity for 
5000 molecular weight polyethylene oxide is 1.2 x lop6 cm2/sec, and 
this was reduced by the empirical factor (1 - r/R)3 to get a pore diffusivity. 
Beck and Shultz (8) found a hindered diffusion factor of about (1 - r/R)4, 
but this included a distribution coefficient which was assumed to be 
(1 - r /R) .  The estimate of Dpore is very uncertain because there are no 
data for ( r /R  > 0.5. The mass transfer coefficient was taken as 6 x 
cm/sec, based on Goldsmith’s data for stirred-cell ultrafiltration of polymer 
solutions (2). 

As shown in Fig. 5, the predicted rejection goes through a maximum at 
a flux of 2-4 x cm/sec and then drops sharply because of polariza- 
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FIG. 4. Maximum rejection for polyethykne oxide by membrane with 25 A 
pores. 

Product Flux, cmlsec x lo4 

FIG. 5. Predicted rejection of polyethylene oxide, M = SOOO, for R = 25 A, 
k = 6 x lo4 crn/sec. 
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tion. With a I-p skin, the maximum rejection is 87% compared with 
a possible value of 91 %. If the membrane skin is 0.2 p ,  there is a greater 
effect of molecular diffusion, particularly at low product rates. 

SPHERICAL MOLECULES 

The viscous flow of liquid through a cylindrical tube containing rigid 
spheres was discussed by Wang and Skalak (9). They considered a chain 
of spheres equally spaced along the axis of a long tube, and their cal- 
culations for a center-to-center spacing equal to the tube diameter are 
used here to estimate the effect of a single spherical molecule in a short 
pore segment. The main effect of a molecule almost as large as the pore 
is to lower the flow for a given pressure gradient and, if only a fraction 
of the pores have any solute molecules, the velocity in the occupied pores 
will be less than in the empty pores. The ratio of these velocities is shown 
as a function of the radius ratio in Fig. 6. This ratio u/u* would replace 
p 0 / p  in Eq. (5) to (9), and Fig. 3 would then apply to dilute solutions of 
either rigid molecules or polymer chains. However, note that the hin- 
drance to flow caused by a rigid molecule is expected to be less than that 
caused by a high molecular weight polymer. For a sphere, v/v*  is 0.45 at 
r / R  = 0.9, whereas the viscosity ratio might be 0.05 to 0.10 for a polymer 
chain of the same radius. 

A secondary effect of a rigid sphere in a pore is that the sphere tends 
to be carried along at a velocity greater than the average fluid velocity. 
Even though a molecule or particle takes random positions because of 
Brownian motion, it is confined to a region between the center and a 
distance r from the wall, where the average velocity exceeds that for the 
entire pore. For Wang and Skalak's case, where the sphere was on the 
centerline, the ratio of sphere velocity to average fluid velocity approached 
2.0 for small spheres and was 1.14 for r /R = 0.9. Since their ratios are 

FIG. 6. Hindrance to flow for a sphere in a circular pore. 
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REJECTION BY ULTRAFILTRATION MEMBRANES 299 

too high for molecules that have random radial positions, yet are not 
far from 1.0 for the most interesting case of a molecule nearly filling 
the pore, the effect is neglected in this analysis. 

DISC USSlO N 
The main feature of the hindered flow theory is that the flow of solution 

is assumed to be smaller in  pores containing a single solute molecule than 
in empty pores. This effect does not change the general shape of the rejec- 
tion curve but does make the maximum possible rejection greater than 
1 - K. Other models which give rejections greater than I - K have been 
presented, but they are based on different premises. In Merten's (3) 
approach, which follows earlier work by Spiegler and Kedem and Katch- 
alsky, the frictional interaction between solute and membrane is assumed 
proportional to solute velocity, and the convective flux and the diffusion 
flux in Eq. (2) are both reduced by a factor I/b, where b = 1 + f Z 3 / / f 2 ' .  

However, it seems possible to have no frictional interaction between a 
solute and the pore wall and yet have a diffusivity much less than the bulk 
value because the wall restricts the Brownian motion of the solute. The 
pore diffusivity is about 0.1 the bulk value for a molecule half the size of 
the pore (8), which corresponds to b = 10. According to the frictional 
interaction theory, such a molecule would be carried along at only 0.1 
the average pore velocity, which seems unlikely. A randomly arranged 
polymer chain would have portions of the molecule throughout the pore 
cross-section, and drag on the chain segments would tend to move the 
molecule with little or no slip. If the molecule were a rigid sphere, it 
might even move slightly more rapidly than the average fluid. 

The theory presented here does not exclude the possibility of an addi- 
tional factor for solute retardation caused by adsorption on the wall or 
entanglement of a polymer chain in two pores. These interaction effects 
would decrease the average convective solute velocity, though adsorption 
would also increase the total solute concentration. These effects would 
also cause a further decrease in the effective diffusivity, but the overall 
factor for decrease in diffusivity and the total reduction in convective 
flux because of hindered solution flow and slip between solute and solvent 
might be quite different and should be considered separately. 

It is difficult to check the proposed theory using published results be- 
cause there is very little data on partition factors or diffusion coefficients 
for molecules in small liquid-filled pores. For the example presented here, 
K was assumed to be (1 - r /R)  based on limited data for polystyrene in 
porous glass. Casassa (7) presents a thermodynamic derivation for random 
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polymer chains in different types of pores, and his predictions for a flat 
plate model are in fair agreement with the data, though K’s predicted for 
circular pores are much too low. The pores in a membrane are probably 
more like void spaces in a packed bed than either circular pores or the 
spaces between flat plates, and agreement with a theory based on any 
simple shape might be a coincidence. The partition coefficient may be 
influenced by polymer-membrane interactions. Jellinek and Bloom (6) 
reported that K ranged from 1.7 to 4.3 for polyvinylpyrrolidone in cel- 
lulose ester membranes, indicating adsorption of polymer. However, the 
effective diffusivities were not very much below the bulk values, showing 
that the polymer was free to migrate in the membrane. 

For spherical molecules in small cylindrical pores, many workers have 
used the Renkin equation, with K = (1 - r/R)’. Giddings and co- 
workers (ZO) have extended the Renkin approach and presented theoretical 
distribution coefficients for spheres and other rigid molecules in various 
types of pores. However, the derivations assume no molecule-wall interac- 
tion and may be greatly in error for rlR close to 1.0. Imagine a pure 
solvent with molecules 9 A in diameter entering a solid with 10 A pores. 
Since the centers of the molecules are restricted to the central 1 % of the 
pore cross-section, the Renkin equation predicts that only 1 % of the pore 
volume is occupied, which seems much too low. Haller (5) found K E 1 
for a spherical virus in porous glass with r /R  = 0.4. Perhaps K values of 
less than 1 come primarily from a pore size distribution which makes some 
portion of the pore volume truly inaccessible to the solute. 

It would be helpful to have more data on the partition factor and diffu- 
sion in small pores for both compact molecules and polymers, but it 
would be very difficult to get such data using typical ultrafiltration mem- 
branes because the skin layer is such a small fraction of the membrane 
thickness. Tests on uniform membranes or porous particles will have to 
be combined with pore size data to predict K for ultrafiltration membranes. 

For a thorough treatment of ultrafiltration, the effects of a pore size 
distribution and a molecular weight distribution for the solute would also 
have to be considered. The hindered flow theory predicts that a solute 
molecule will spend proportionately more time in small pores than in 
large pores as it travels through the membrane, which tends to decrease 
the effective average pore size. If there are several solutes, the rejection 
for each based on C,  is calculated separately as long as the concentrations 
in the membrane are low enough so that few pores have more than one 
solute molecule. The complication arises from calculating the wall con- 
centration for each solute, since all partially rejected solutes contribute 
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to  an increase in the osmotic pressure, which affects the product flow, and 
to an increase in the viscosity of the solution near the wall, which affects 
the diffusion flux in the boundary layer. 

SYMBOLS 

solute concentration on the feed side of the membrane 
solute concentration, mass per unit volume of membrane 
solute concentration, mass per unit volume of pore 
solute concentration in the product 
solute concentration at the wall or membrane-solution interface 
pore diameter 
effective diffusivity, D p o r e ~ / ~  
friction coefficient, solute-solvent 
friction coefficient, solute-membrane 
solute flux, mass/total area, time 
mass transfer coefficient for external boundary layer, length/ 
time 
partition factor, Cpnre/C, 
membrane (or skin) thickness 
radius of solute molecule 
pore radius 
product flux, volume/total area, time 
flux with no solute in the feed 
particle velocity in a pore 
velocity of solvent in an empty pore 
distance normal to the surface 
fraction of pores containing a solute molecule 
void fraction 
tortuosity 
viscosity of solution in a pore 
viscosity of solvent 
defined by Eq. (9) 
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